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This work is consisted to investigate the vibration behavior of FGM beams under differ-
ent boundary conditions with diverse volume fraction. The main objective in this paper
is to study the thickness influence of the sandwich beams skin on the frequencies of the
structures. The classical Euler-Bernoulli theory (CLBT) with assuming that the mate-
rial properties of the FGM layer will evaluated continuously in the thickness direction
according to the power law (P-FGM) is used to derived the equation of motion. The
frequencies obtained are compared with the natural frequencies of a two-material and
those of the base materials.
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1. Introduction

Functionally gradient material (FGM) characterized by shifting without interrup-
tion property due to a continuous change of the composition, morphology and ef-
fectively in the structure, represent a rapid technological leap across the different
areas of potential application; research was established to prepare efficient ther-
mal barrier materials for unlimited durable. Their main purpose is to improve the
wear resistance or oxidation, have a light armored material with high ballistic ef-
ficiency (aerospace shuttles) and can withstand the high temperature environment
(aeronautics, terrestrial or turbo-machinery).

Currently, most research activities and developments in structural applications
focused primarily on sectors to join two basic components, ceramic and metal. Many
benefits are expected in the using of this class of FGM, for example, the face with
the content is high ceramic can provide high wear resistance, while the opposite
side where the content is high in the metal provides high hardness and strength.
Thus, such materials are very desirable for tribological applications where the wear
resistance and high hardness are required simultaneously.
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The beam is considered as the structural element most responded, as an integral
part in most of the construction works or machinery parts [1], which made necessary
the study of their static / dynamic behavior. The beams are used as structural
component in several construction applications and a large number of studies can
be found in the literature about the transverse vibration of the uniform isotropic
beams [2]. The importance of developing an analysis of the vibration behavior of
the beams is related to the use of the beams as a basic element in achieving the
structures, and to determine the effects of changes in boundary conditions, and
changes of the material on the natural frequencies and natural modes of vibration.

In the mid 60’s, the sandwich construction underwent several searches. For a
thorough review of the literature for the analysis of structures sandwiches the re-
searcher should consult articles Plantema [3], Allen [4], Whitney [5], Zenkert [6],
Vinson [7]. The methods to analysis sandwich structures and digital solutions for
standard problems are grouped in [3,4]. The structural analysis of composite sand-
wich structures with constant thickness are discussed in [5,7], where they showed the
importance of the introduction of the shear flexibility of the heart. More functionally
graded materials (FGM) Koizumi [8], Suresh and Mortensen [9], a new generation
advanced composite materials primarily homogeneous proposed for thermal barri-
ers [8], have been increasingly applied to the structures of modern engineering in a
high temperature environment.

Several researches have been done on the mechanical and thermal behavior of
FGM [9], Tanigawa [10]. The simplest FGM, two different materials gradually
change from one to the other.

Most of the families of FGM are gradually made of refractory ceramic to metal.
Typically, the FGM is constructed from a mixture of ceramic and metal or a combi-
nation of different materials. The ceramic in an FGM as a barrier to thermal effects
and protects the metal against corrosion and oxidation, and the FGM is hard and
reinforced by the metal composition. Currently FGM are developed for general use
as structural elements in extremely high temperature environments and different
applications. Due to the wide FGM applications, several studies were performed
to analyze the behavior and understand the mechanical and mechanisms of FGM
structures. Theoretical and experimental depth studies have been conducted and
published on the fracture mechanics Bao and Wang [11], Marur [12]. the distribu-
tion of thermal stress Williamsson and Drake [13]. Free vibration analysis of FG
nano-beams using Ritz method Elmeiche et al. [14]. These FGM structures, beams
and shells are always interests researchers for their applications. Approaches such
as the use of the deformation of the shear beam theory, the energy method, and the
finite element method, were performed.

FGM sandwich can mitigate a concentration of shear stress between the faces
because of the gradual change in material properties at the interface Coeur skins.
The effects of FGM nucleus have been studied by Venkataraman and Sankar [15] and
Anderson [16] on the shear stresses at the skin interface of a beam Coeur sandwich
FGM. Pan and Han [17] analyzed the static response of the rectangular plate made
of several functionally graded layers, anisotropic, Shen [18] studied two types two
types laminated hybrid plates FGM, one with FGM core and piezoelectric skins
ceramic and the other is with FGMs skins and piezoelectric ceramic core. There
have been also studies dealt with active vibration control of FGM structures the
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reader can be referred to Bendine et al. [19], Bendine and Wankhade [20], He et
al. [21], Liew et al. [22].

The FGM sandwich is generally made of two types: skin FGM – uniform core
and homogeneous skins - FGM core. In the present paper the second type (sandwich
beam with homogeneous skin – core FGM) is considered and analyzed to investi-
gate the frequency response of the sandwich FGM beam with different boundaries
conditions and volume fraction.

2. Material Properties of the FGM Beam

Consider the case of a sandwich beam FGM with uniform thickness composed of
three heterogeneous layers relative to a Cartesian coordinate system (x, y, z). Upper
and lower faces are located at Z = ±h/2 and the sides of the beam are parallel to
the x and y axes

Figure 1 FGM rectangular sandwich beam in Cartesian coordinates

The sandwich beam is composed of three elastic layers, named; layer ”1”, layer
”2” and layer ”3” on the front ,lower and the top of the beam. The vertical co-
ordinates of the lower face, the two interfaces, and the upper sides are denoted
by h1 = −h/2, h2, h3, and h4 = +h/2, respectively. The thickness ratio in each
layer from bottom to top is denoted briefly by combinations of three digits ”1-0-1”,
”2-1-2” as shown in Fig. 2.

Figure 2 Geometry of FGM rectangular sandwich beam in Cartesian coordinates

The properties of the FGM vary continuously as a function of the volume frac-
tion of the material in the direction of the thickness. A function of power law is
commonly used to describe this variation in material properties. The sandwich
structures FGMs is discussed as follows.
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The volume fraction in the P-FGM is provided by a power law depending on
the thickness:

V (1) = 0 z ∈ [h1, h2] (1)

V (2) =

(
z − h2
h3 − h2

)p
z ∈ [h2, h3] (2)

V (3) = 1 z ∈ [h3, h4] (3)

where V (n), (n = 1, 2, 3), denotes a function of the volume fraction of the layer n;
p is the index of the volume fraction (0 ≤ p ≤ +∞), which indicates the physical
change through thickness as displayed in Fig. 3.

Figure 3 Volume fraction distribution of the sandwich beam according to P-FGM law with
different index p

Actual material properties such as Young’s modulus E, and Poisson’s ratio ν
and bulk density ρ can be expressed by the law of mixtures Marur [12] as:

P (n)(z) = P2 + (P1 − P2) V (n) (4)

or P (n) is the actual physical ownership of FGM layer n. P1 and P2 are the physical
properties of the upper and lower surfaces of the layer 3 and 1, respectively, in this
study, it is assumed that the Poisson’s ratio is constant [24].

3. Mathematical formulations

In the present formulation, classical Bernoulli beam theory description of the dis-
placement field is adopted

u (x, z, t) = u (x, t)− z ∂w(x,t)
∂x

w (x, z, t) = w (x, t)
(5)

where u, w are the displacement components of the reference plane of the plate,
respectively. According to the hooks low, the stress–strain relations for an FGM
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beam are given as follows

 τxx
τzz
τxz

 =


E(z)

1−ν(z)2 0 0

0 E(z)

1−ν(z)2 0

0 0 E(z)
2(1+ν(z))


 εxx

εzz
γxz

 (6)

where xx, zz, τxz and εxx, εzz, γxzare the stress and strain components, respectively.
The strain–displacement relations are given by

εxx = ∂u(x,z,t)
∂x = ∂u(x,t)

∂x − z ∂
2w(x,t)
∂x2

εzz = ∂w(x,z,t)
∂z = ∂w(x,t)

∂z

γxz = ∂u(x,z,t)
∂z + ∂w(x,z,t)

∂x

(7)

Using the virtual work principle, the following motion equations of the FGM
beam can be obtained.

A11
∂2u0 (x, t)

∂x2
−B11

∂3w (x, t)

∂x3
= 0 (8a)

B11
∂3u0 (x, t)

∂x3
−D11

∂4w (x, t)

∂x4
+ I1ẅ (x, t) = 0 (8b)

where the following definitions apply

(A11, B11, D11) =

∫ +h
2

−h
2

E (z)

1− ν (z)
2 (1, z, z2)dz (9)

I1 =

∫ +h
2

−h
2

ρ (z) dz (10)

where A11, B11, D11 denoted as the FGM beam rigidities and I1 is the density. The
general solution of the dynamic Eqs. (8a) and (8b) is given in the following form:

w (x, t) = wn (x) .eint (11)

where wn is the natural frequency and wn is the mode shape of the FGM beam

wn (τ) = A1 cos (βnLτ) +A2 sin (βnLτ) +A3 cosh (βnLτ) +A4 sinh (βnLτ)

where
τ =

x

L
τ ∈ [ 0 , 1 ] (12)

4. Numerical Results and Discussion

Considering the case of a homogeneous rigid FGM heart and skin wherein the
Young’s modulus and mass density of the layer ”1” are Ec = 380 GPa and ρc =
3800 kg/m3 (P1, Alumina) in the upper face and EM = 70 Gpa, ρm = 2708 kg/m3

(P2, Aluminum) in the underside. For various boundary conditions we obtain results
shown in Tab. 1.
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Table 1 The variation of non dimensional frequencies for different boundary conditions with the
power low index

Boundary
condition

Type ω1 p = 0 p = 0.5 p = 1 p = 2 p = 5 p = 10

C-C
0-1-0

Exact
solution
(present)

12.4302 10.5840 9.5685 8.7317 8.3138 8.0677

M. Simsek 12.4142 10.5713 9.5554 8.7186 8.3006 8.0556
Nguyen
et al. [25]

12.2243 10.4269 9.4319 8.5977 8.1446 7.8860

1-2-1
Exact
solution
(present)

9.6507 9.0283 8.7312 8.5100 8.4430 8.4771

Nguyen
et al. [25]

9.5451 8.9243 8.6264 8.3959 8.3047 8.3205

C-S
0-1-0

Exact
solution
(present)

8.5661 7.2938 6.5940 6.0173 5.7293 5.5597

— — — — — — — — — — — — — —
— — — — — — — — — — — — — —

1-2-1
Exact
solution
(present)

6.6507 6.2217 6.0170 5.8645 5.8183 5.8418

— — — — — — — — — — — — —

S-S
0-1-0

Exact
solution
(present)

5.4834 4.6690 4.2210 3.8518 3.6675 3.5589

M. Simsek
[24]

5.4777 4.6646 4.2163 3.8472 3.6628 3.5547

Nguyen
et al. [25]

5.4603 4.6506 4.2051 3.8361 3.6485 3.5390

1-2-1
Exact
solution
(present)

4.2573 3.9827 3.8516 3.7541 3.7245 3.7395

Nguyen
et al. [25]

4.2445 3.9695 3.8387 3.7402 3.7081 3.7214

C-F
0-1-0

Exact
solution
(present)

1.9534 1.6633 1.5037 1.3722 1.3065 1.2679

M. Simsek
[24]

1.9525 1.6627 1.5029 1.3714 1.3057 1.2671

Nguyen
et al. [25]

1.9496 1.6602 1.5011 1.3696 1.3034 1.2646

1-2-1
Exact
solution
(present)

1.5166 1.4188 1.3721 1.3374 1.3268 1.3322

Nguyen
et al. [25]

1.5145 1.4165 1.3700 1.3350 1.3241 1.3292

Table 2 The natural frequencies for clamped-clamped (C-C) beam with the power low index
p ωn 2-1-2 1-1-1 1-2-1 1-3-1 1-8-1 0-1-0

0.1
ω1 29.425 29.635 30.048 30.216 29.763 26.368
ω2 81.112 81.707 82.828 83.291 82.042 72.684
ω3 153.01 160.14 162.37 163.28 160.83 142.49

1
ω1 29.807 30.178 30.869 31.381 32.558 33.380
ω2 82.164 83.160 85.093 86.504 89.750 93.254
ω3 161.07 163.02 166.81 169.58 175.94 182.82

10
ω1 30.488 31.466 33.217 34.484 37.500 41.073
ω2 84.043 86.739 91.564 95.059 103.37 113.22
ω3 164.75 170.04 179.50 186.35 202.64 221.95
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Table 3 The natural frequencies for clamped-supported (C-S) with the power low index
p ωn 2-1-2 1-1-1 1-2-1 1-3-1 1-8-1 0-1-0

0.1
ω1 12.980 13.072 13.255 13.329 13.129 11.631
ω2 51.922 52.291 53.020 53.317 52.517 46.527
ω3 116.82 117.65 119.29 119.96 118.16 104.69

1
ω1 13.148 13.308 13.617 13.843 14.362 14.922
ω2 52.595 53.233 54.470 55.374 57.451 59.694
ω3 118.34 119.77 122.55 124.59 129.26 134.31

10
ω1 13.449 13.881 14.653 15.212 16.542 18.119
ω2 53.798 55.524 58.612 60.849 66.170 72.744
ω3 121.04 124.92 131.87 136.91 148.88 163.07

Table 4 The natural frequencies for supported-supported (S-S) beam with the power low index
p ωn 2-1-2 1-1-1 1-2-1 1-3-1 1-8-1 0-1-0

0.1
ω1 20.278 20.422 20.707 20.510 20.510 18.171
ω2 65.713 66.181 67.104 67.499 66.467 58.886
ω3 137.10 138.08 140.00 140.79 138.67 122.86

1
ω1 20.541 20.790 21.273 21.626 22.437 23.314
ω2 66.566 67.373 68.939 70.082 72.711 75.551
ω3 138.88 140.56 143.83 146.22 151.70 157.63

10
ω1 21.010 21.684 22.891 23.764 25.842 28.305
ω2 68.088 70.272 74.181 77.013 83.746 91.725
ω3 142.06 146.61 154.77 160.68 174.73 191.38

Table 5 The natural frequencies for clamped-free (C-F) with the power low index
p ωn 2-1-2 1-1-1 1-2-1 1-3-1 1-8-1 0-1-0

0.1
ω1 4.624 4.657 4.722 4.748 4.677 4.144
ω2 28.979 29.186 29.593 29.758 29.312 25.969
ω3 81.144 81.721 82.861 83.324 82.075 72.713

1
ω1 4.684 4.741 4.851 4.931 5.116 5.316
ω2 29.355 29.711 30.402 30.906 32.065 33.318
ω3 82.196 83.193 85.127 86.539 89.785 93.291

10
ω1 4.791 4.945 5.220 5.419 5.893 6.455
ω2 30.026 30.990 32.714 33.962 36.932 40.451
ω3 84.076 86.773 91.600 95.096 103.41 113.26

For checking the accuracy of the present method, the non dimensional frequen-
cies of the sandwich FGM beam with different boundary condition and power low
index were compared with those obtained in [24,25]. The results are depicted in Tab.
1. It can be noticed that the results were in a good agreement which demonstrated
the precision of our model.

Tables 2–5 show the variation of the first three natural frequencies of four bound-
ary condition (C–C, S-S, C-S and C–F) of the beam with the power-law exponents
(0.1, 1 and 10) for verses materials combinations. The first observation is that the
natural frequencies is proportional to the power low index p, that’s means that the
frequencies of the structure are important when it’s have a higher ceramic ratio;
it can be also remarked that the thickness ratio getting more significant when the
variation of the natural frequencies is in higher vibration modes.

The natural frequencies of the sandwich beam versus the FGM thickness ratio
for the power low index 0.1, 1 and 10 are detected in Fig 4 to 6, respectively,
its noticed that the variation ratio of frequency under clamped-clamped boundary
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Figure 4 Natural frequencies of a sandwich beam for p = 0.1

Figure 5 Natural frequencies of a sandwich beam for p = 1

Figure 6 Natural frequencies of a sandwich beam for p = 10
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conditions is important to the other sets (C-S, S-S and C-F), This importance is
lessened when the stiffness on the beam decreases. In the same figures, it is found
that for the weak voluminal fraction index (p < 1), natural frequencies are greater
when the thickness of the FGM layer (h-FGM) reaches the margins of 60% in the
total thickness (h-total) and low when the h-FGM equal 100% of h-total, This
reduction is rapid when the thickness ratio between 0.8 and 1. For power low index
superior p ≥ 1, the natural frequencies are maximal when the beam thickness is
purely FGM and minimal when h-FGM assumes a low values, it is well observed in
the Figs. 5 and 6 that the natural frequencies is proportional to the FGM thickness
and take more important value when the FGM thickness is superior.

Figure 7 Natural frequencies of a clamped - clamped In sandwich beam compared to the natural
frequencies of an aluminum beam for p = 0.1

Figure 8 Natural frequencies of a clamped - clamped In sandwich beam compared to the natural
frequencies of an alumina beam for p = 0.1

Figures 7 and 8 show that the natural frequencies of a sandwich beam FGM (for
all the boundary conditions) are proportional to the natural frequency of the base
materials (ceramics, metal). The plot of the beam with combination ”0-1-0” has
the smallest frequencies value while that corresponding to ”1-3-1” has the largest
value.
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5. Conclusion

In this paper, the free vibrations of sandwich beams FGM assuming that the mate-
rial properties vary depending on the thickness with a power distribution (P-FGM)
is examined. The main purpose of this work is to study the thickness influence of
the sandwich FGM beams skin on the frequencies for different volume fraction. The
exact solution has been presented with various boundary conditions. The variation
in the volume fractions of the FGM materials on the natural frequencies is also
studied and compared with the natural frequencies of a two-material and those of
the base materials.
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